ᐒ Sistema binario 4: Operaciones con números binarios

Sistema binario 4: Operaciones con números binarios

Suma de números binarios

La tabla de sumar para números binarios es la siguiente:

  +   0   1
  0   0   1
  1   1 10

Las posibles combinaciones al sumar dos bits son:

  • 0 + 0 = 0
  • 0 + 1 = 1
  • 1 + 0 = 1
  • 1 + 1 = 10

Note que al sumar 1 + 1 es 102, es decir, llevamos 1 a la siguiente posición de la izquierda (acarreo). Esto es equivalente en el sistema decimal a sumar 9 + 1, que da 10: cero en la posición que estamos sumando y un 1 de acarreo a la siguiente posición.

Ejemplo:

        1
      10011000
    + 00010101
    ———————————
      10101101

Se puede convertir la operación binaria en una operación decimal, resolver la decimal, y después transformar el resultado en un (número) binario. Operamos como en el sistema decimal: comenzamos a sumar desde la derecha, en nuestro ejemplo, 1 + 1 = 10, entonces escribimos 0 en la fila del resultado y llevamos 1 (este "1" se llama acarreo o arrastre). A continuación se suma el acarreo a la siguiente columna: 1 + 0 + 0 = 1, y seguimos hasta terminar todas las columnas (exactamente como en decimal).

Resta de números binarios

El algoritmo de la resta en sistema binario es el mismo que en el sistema decimal. Pero conviene repasar la operación de restar en decimal para comprender la operación binaria, que es más sencilla. Los términos que intervienen en la resta se llaman minuendo, sustraendo y diferencia.

Las restas básicas 0 - 0, 1 - 0 y 1 - 1 son evidentes:

  • 0 - 0 = 0
  • 1 - 0 = 1
  • 1 - 1 = 0
  • 0 - 1 = 1 (se transforma en 10 - 1 = 1) (en sistema decimal equivale a 2 - 1 = 1)

La resta 0 - 1 se resuelve igual que en el sistema decimal, tomando una unidad prestada de la posición siguiente: 0 - 1 = 1 y me llevo 1 (este valor se resta al resultado que obtenga, entre el minuendo y el sustraendo de la siguiente columna), lo que equivale a decir en el sistema decimal, 2 - 1 = 1.

Ejemplos

        10001                           11011001    
       -01010                          -10101011
                                   
       ——————                          —————————
        00111                           00101110

En sistema decimal sería: 17 - 10 = 7 y 217 - 171 = 46.

Para simplificar las restas y reducir la posibilidad de cometer errores hay varios métodos:

  • Dividir los números largos en grupos. En el siguiente ejemplo, vemos cómo se divide una resta larga en tres restas cortas:
        100110011101             1001     1001     1101
       -010101110010            -0101    -0111    -0010
       —————————————      =     —————    —————    —————
        010000101011             0100     0010     1011
  • Utilizando el complemento a dos (C2). La resta de dos números binarios puede obtenerse sumando al minuendo el «complemento a dos» del sustraendo.

Ejemplo. La siguiente resta, 91 - 46 = 45, en binario es:

        1011011                                             1011011
       -0101110       el C2 de 0101110 es 1010010          +1010010
       ————————                                            ————————
        0101101                                            10101101

En el resultado nos sobra un bit, que se desborda por la izquierda. Pero, como el número resultante no puede ser más largo que el minuendo, el bit sobrante se desprecia.

Un último ejemplo: vamos a restar 219 - 23 = 196, directamente y utilizando el complemento a dos:

        11011011                                            11011011
       -00010111       el C2 de 00010111 es 11101001       +11101001
       —————————                                           —————————
        11000100                                           111000100

Y, despreciando el bit que se desborda por la izquierda, llegamos al resultado correcto: 11000100 en binario, 196 en decimal.

  • Utilizando el complemento a uno. La resta de dos números binarios puede obtenerse sumando al minuendo el complemento a uno del sustraendo y a su vez sumarle el bit que se desborda.

Producto de números binarios

La tabla de multiplicar para números binarios es la siguiente:

  ·   0   1
  0   0   0
  1   0   1

El algoritmo del producto en binario es igual que en números decimales; aunque se lleva a cabo con más sencillez, ya que el 0 multiplicado por cualquier número da 0, y el 1 es el elemento neutro del producto.

Por ejemplo, multipliquemos 10110 por 1001:

        10110       
         1001                    
    —————————          
        10110               
       00000                
      00000                
     10110                
    —————————           
     11000110

En sistemas electrónicos, donde suelen usarse números mayores, se utiliza el método llamado algoritmo de Booth.

                 11101111
                   111011
                __________
                 11101111
                11101111
               00000000
              11101111
             11101111
            11101111
           ______________
           11011100010101

División de números binarios

La división en binario es similar a la decimal; la única diferencia es que a la hora de hacer las restas, dentro de la división, éstas deben ser realizadas en binario.

Ejemplo

Dividir 100010010 (274) entre 1101 (13):

 100010010 /1101 = 010101
 -0000       
———————
 10001
 -1101
———————
  01000
 - 0000
 ———————
   10000
  - 1101
  ———————
    00111
   - 0000
   ———————
     01110
    - 1101
    ———————
     00001

ᐒ Sistema binario 1: Historia

ᐒ Sistema binario 2: Representación

ᐒ Sistema binario 3: Conversión entre binario y decimal

ᐈ Sistema binario 5: Conversión entre sistema binario y octal

ᐈ Sistema binario 6: Conversión entre binario y hexadecimal 🔠 🔢

 
 
 
Fuente: http://es.wikipedia.org/wiki/Sistema_binario

Comentarios